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1. Additional Gaussian noise of (2, 3) threshold deterministic all-optical quantum
state sharing (AOQSS) protocol.

Figure S1(a) (S1(b)) shows the noise power spectra for the amplitude (phase) quadrature variances of âin (blue
trace), â1 (orange trace), â2 (green trace), and â3 (grey trace). The amplitude (phase) quadrature variance of â3
is 5.04 ± 0.08 dB (4.91 ± 0.08 dB) above that of the input secret state âin. The gain of parametric amplifier for
generating Einstein-Podolsky-Rosen (EPR) entangled source is about 1.26. It means that the amplitude (phase)
quadrature variances of â3 should be about 1.82 dB above that of the input secret state âin in theory. In this sense,
based on Eq. (3) of the main manuscript, we can calculate that the additional Gaussian noise of quantum state
sharing is about 3.22 dB. The amplitude and phase quadrature variances of â1 (â2) are about 2.06 ± 0.08 dB and
1.98± 0.08 dB (2.08± 0.08 dB and 2.14± 0.08 dB) above the input secret state âin, respectively.

Figure S1: The noise power spectra for the (a) amplitude and (b) phase quadrature variances of âin (blue traces), â1 (orange
traces), â2 (green traces), and â3 (grey traces). The vertical scale is normalized to the quadrature variances of the input secret
state.
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2. The detailed derivation of the fidelity of (2, 3) threshold deterministic AOQSS
protocol.

Figure S2 shows the schematic of (2, 3) threshold deterministic AOQSS protocol. In order to implement the (2, 3)
threshold deterministic AOQSS protocol, the dealer needs to encode the secret coherent state âin into three shares
with the help of EPR entangled source. This EPR entangled source is generated by four-wave mixing (FWM) process
with the Hamiltonian given by [44]

Ĥ = i~râ†EPR1â
†
EPR2 + H.c.. (S1)

â†EPR1 and â†EPR2 are the creation operators associated with EPR1 and EPR2, respectively. r denotes the interaction
strength of FWM process. H.c. is the Hermitian conjugate. The output fields of the FWM process can be expressed
as [44]

âEPR1(τ) =
√
G1â01 +

√
G1 − 1â†02,

â†EPR2(τ) =
√
G1 − 1â01 +

√
G1â

†
02,

(S2)

where â01, â02 are the annihilation operators associated with the vacuum input states. G1 = cosh2(rτ) is the intensity
gain of the FWM process and τ is the interaction time. Then, âin and âEPR1 are combined by a 50:50 beam splitter
(BS1). The outputs of BS1 are sent to player1 and player2, and âEPR2 is sent to player3. The three shares with
additional Gaussian noise can be expressed as [38]

â1 = (âin − âEPR1 − δN)/
√

2,

â2 = (âin + âEPR1 + δN)/
√

2,

â3 = âEPR2 + δN∗.

(S3)

The additional Gaussian noise is denoted by δN = (X̂N +iŶN )/2, which has a mean of 〈X̂N 〉 = 〈ŶN 〉 = 0 and variance

of ∆2X̂N = ∆2ŶN = VN .
For (2, 3) threshold deterministic AOQSS protocol, at least two of these three players need to cooperate to recon-

struct the secret state, and there are three reconstruction structures for (2, 3) threshold deterministic AOQSS. When
player1 and player2 are authorized, the secret state can be reconstructed by {1, 2} reconstruction structure, which
is shown in Fig. S2(b). In this structure, â1 is combined with â2 by the 50:50 BS2. By locking the relative phase
between â1 and â2 to 0, the output beam can be expressed as [37]

âout = (â1 + â2)/
√

2 = âin. (S4)

Figure S2: The schematic of (2, 3) threshold deterministic AOQSS protocol. (a) The dealer protocol. FWM, four-wave mixing;
G1, the intensity gain of the FWM process; â01 and â02, the annihilation operators associated with the vacuum input states
of the FWM; âEPR1 and âEPR2, the annihilation operators associated with EPR1 and EPR2, respectively; âin, the annihilation
operator associated with the secret coherent state; BS1, 50:50 beam splitter; â1, â2, and â3, the annihilation operators associated
with the three shares. (b) {1, 2} reconstruction structure. BS2, 50:50 beam splitter; âout, the annihilation operator associated
with the output reconstructed state. (c) {1, 3} reconstruction structure. PIA, phase-insensitive amplifier; G2, the intensity
gain of PIA.
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The amplitude quadrature and phase quadrature of the output state are given by

X̂out = â†out + âout = X̂in,

Ŷout = i(â†out − âout) = Ŷin.
(S5)

Based on Eq. (S3) and Eq. (S4), we can see that the secret coherent state is retrieved by player1 and player2, while
player3 can’t get any information of the secret state. The quality of the reconstructed state is quantified by its fidelity
[47], which can be expressed as [37, 38]

F = 2e−(kx+ky)/4/

√
(1 + ∆2X̂out)(1 + ∆2Ŷout), (S6)

where kx = 〈X̂in〉2(1−gx)2/(1+∆2X̂out), ky = 〈Ŷin〉2(1−gy)2/(1+∆2Ŷout), gx = 〈X̂out〉/〈X̂in〉, and gy = 〈Ŷout〉/〈Ŷin〉.
With ∆2X̂in = ∆2Ŷin = 1 for input coherent state, the fidelity of {1, 2} reconstruction structure is F clas

{1,2} = 1.

When player1 and player3 are authorized, the secret state can be reconstructed by {1, 3} reconstruction structure
shown in Fig. S2(c). In this reconstruction structure, â1 is amplified by a phase-insensitive amplifier (PIA) with the
help of â3. The output state can be expressed as [44]

âout =
√
G2â1 +

√
G2 − 1â†3. (S7)

Under the condition of G2 = 2, âout is given by

âout = âin − âEPR1 + â†EPR2. (S8)

In this way, the amplitude quadrature and phase quadrature of âout are given by

X̂out = X̂in − X̂EPR1 + X̂EPR2,

Ŷout = Ŷin − ŶEPR1 − ŶEPR2.
(S9)

Since the EPR entangled source used here is generated with vacuum injections, 〈X̂out〉 = 〈X̂in〉 and 〈Ŷout〉 = 〈Ŷin〉.
Based on Eqs. (2), (6), and (9), the fidelity of {1, 3} reconstruction structure can be calculated as [37, 38]

F = 2e−(kx+ky)/4/

√
(1 + ∆2X̂out)(1 + ∆2Ŷout) = 1/[2G1 − 2

√
G1(G1 − 1)], (S10)

where kx = ky = 0, ∆2X̂out = ∆2Ŷout = 4G1−4
√
G1(G1 − 1)−1. Without the help of EPR entangled source (G1 = 1),

the maximum achievable fidelity of {1, 3} reconstruction structure is F clas
{1,3} = 1/2. The {2, 3} reconstruction structure

is equivalent to {1, 3} structure, and the fidelity of {2, 3} reconstruction structure (F clas
{2,3} = 1/2) can be calculated

similarly. Therefore, the classical fidelity limit of (2, 3) threshold deterministic AOQSS protocol can be given by

F clas
avg =

F clas
{1,2}+F clas

{1,3}+F clas
{2,3}

3 = 2/3. Based on Eq. (S10), when G1 → ∞, the average fidelity of (2, 3) threshold
deterministic AOQSS protocol Favg → 1, beating the corresponding classical limit.

3. The typical results for (2, 3) threshold deterministic AOQSS with {2, 3}
reconstruction structure.

The typical noise power results for (2, 3) threshold deterministic AOQSS with {2, 3} reconstruction structure are
shown in Fig. S3. Similar to AOQSS with {1, 3} structure, from Fig. S3(a) to Figure S3(d), we can obtain the fidelity
(F{2,3} = 0.61± 0.02) of AOQSS with {2, 3} structure. The corresponding classical fidelity limit is 0.49± 0.01, which
can be obtained from the orange traces in Fig. S3(a) to Fig. S3(d). Fig. S3(e), (f) shows the noise spectra for the
adversary structure {1}. The obtained fidelity for {1} structure is F{1} = 0.09± 0.01.
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Figure S3: The typical noise power results for {2, 3} reconstruction structure and the corresponding adversary structure
{1}. (a) and (b) show the amplitude and phase quadrature variances with classical modulations for the input secret state
(blue dashed traces) and the output state (orange solid traces) of classical {2, 3} structure, respectively. (c) and (d) show the
amplitude and phase quadrature variances without classical modulations for the input secret state (blue traces), the output
state of {2, 3} structure (green traces), and the corresponding classical {2, 3} structure (orange traces), respectively. (e) and
(f) show the amplitude and phase quadrature variances of {1} structure, respectively. The input secret state and the output
state with (without) classical modulations are shown as the blue (black) traces and the orange (red) traces, respectively. The
vertical scale is normalized to the quadrature variances of the input secret state.

4. (3, 5) threshold deterministic AOQSS protocol.

Our scheme provides a platform to implement arbitrary (k, n) threshold AOQSS. Here we show such scalability by
giving an example of (3, 5) threshold deterministic AOQSS protocol. Based on Eq. (S1) and Eq. (S2), the two EPR
entangled sources used in the dealer protocol shown in Fig. S4 can be expressed as [44]

âE1(τ1) =
√
G1â01 +

√
G1 − 1b̂†01,

b̂†E1(τ1) =
√
G1 − 1â01 +

√
G1b̂

†
01,

âE2(τ2) =
√
G2â02 +

√
G2 − 1b̂†02,

b̂†E2(τ2) =
√
G2 − 1â02 +

√
G2b̂

†
02,

(S11)

where â01, b̂01, â02, and b̂02 are the annihilation operators associated with the vacuum input states. G1 = cosh2(r1τ1)
(G2 = cosh2(r2τ2)) is the intensity gain of the FWM process and τ1 (τ2) is the interaction time. r1(r2) denotes the

interaction strength of FWM process. âE1 and b̂E1 (âE2 and b̂E2) are the annihilation operators associated with EPR
entanglement. Then, based on the dealer protocol of (3, 5) threshold deterministic AOQSS shown in Fig. S4(a), the
five shares can be expressed as [38]

â1 = 1√
2
(âin + âE1 + δN),

â2 = 1
2 âin −

1
2 âE1 − 1√

2
âE2 − 1

2δN,

â3 = 1
2 âin −

1
2 âE1 + 1√

2
âE2 − 1

2δN,

â4 = 1√
2
(b̂E2 − b̂E1 − δN∗),

â5 = 1√
2
(b̂E2 + b̂E1 + δN∗),

(S12)
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where âin is the annihilation operator associated with the secret coherent state. δN represents the additional Gaussian
noise. â1, â2, â3, â4, and â5 are the annihilation operators associated with the five shares. Then, five shares are sent
to five players.

Figure S4: The structure of (3, 5) threshold deterministic AOQSS. (a) The dealer protocol. FWM, four-wave mixing process

for generating EPR entanglement; â01, b̂01, â02, and b̂02, the annihilation operators associated with the vacuum input states
of the FWM processes; âE1 and b̂E1 (âE2 and b̂E2), the annihilation operators associated with EPR entanglement; 1:1, 50:50
beam splitter; âin, the annihilation operator associated with the secret coherent state; â1, â2, â3, â4, and â5, the annihilation
operators associated with the five shares. (b) The reconstruction structures. BS, beam splitter. âout, the annihilation operator
associated with the output reconstructed state; PIA, phase-insensitive amplifier.

For (3, 5) threshold deterministic AOQSS protocol, at least three of these five players need to cooperate to recon-
struct the secret state, and there are ten reconstruction structures for (3, 5) threshold deterministic AOQSS as shown
in Fig. S4(b). For {1, 2, 3} reconstruction structure, â2 and â3 are combined by a 50:50 BS. The output of this BS âc
can be expressed as [37]

âc =
1√
2

(â2 + â3). (S13)

To retrieve the secret state, âc and â1 are then combined by another 50:50 BS, and the output state âout can be
expressed as [37]

âout =
1√
2

(â1 + âc) = âin. (S14)

In this sense, the amplitude quadrature and phase quadrature of the output state are given by

X̂out = â†out + âout = X̂in,

Ŷout = i(â†out − âout) = Ŷin.
(S15)

Based on Eq. (S6), the fidelity of this {1, 2, 3} reconstruction structure can be given as F clas
{1,2,3}=1.

For {1, 4, 5} reconstruction structure, â4 and â5 are combined by a 50:50 BS. The output of this BS âc can be
expressed as [37]

âc =
1√
2

(â4 − â5). (S16)

Then, â1 is amplified by a PIA with the help of âc, which can be expressed as [44]

âout =
√
G3â1 +

√
G3 − 1â†c, (S17)
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where G3 is the intensity gain of the PIA. When G3 = 2, the amplitude quadrature and phase quadrature of the
output state and the corresponding quadrature variances can be given as

X̂out = X̂in + X̂âE1 − X̂b̂E1
,

Ŷout = Ŷin + ŶâE1
+ Ŷb̂E1

,

∆2X̂out = ∆2Ŷout = 4G1 − 4
√
G1(G1 − 1)− 1.

(S18)

Based on Eq. (S6), the fidelity of this {1, 4, 5} reconstruction structure can be given as

F{1,4,5} = 1/[2G1 − 2
√
G1(G1 − 1)]. (S19)

For {1, 2, 4} reconstruction structure, â1 and â2 are combined by a BS with a transmissivity of T . The output of
this BS âc can be expressed as [37]

âc =
√
T â1 +

√
1− T â2. (S20)

Then, âc is amplified by a PIA with the help of â4, which can be expressed as [44]

âout =
√
G3âc +

√
G3 − 1â†4

= [
√

G3T
2 +

√
G3(1−T )

4 ]âin + [
√

G3T
2 −

√
G3(1−T )

4 ]âE1 −
√

G3−1
2 b̂†E1

−
√

G3(1−T )
2 âE2 +

√
G3−1

2 b̂†E2 + [
√

G3T
2 −

√
G3(1−T )

4 −
√

G3−1
2 ]δN.

(S21)

When G3 = 7− 4
√

2 and T = (4
√

2 + 7)/17, the amplitude quadrature and phase quadrature of the output state can
be given as

X̂out = X̂in + g1x(X̂âE1
− X̂b̂E1

) + g1x(X̂b̂E2
− X̂âE2

),

Ŷout = Ŷin + g1y(ŶâE1 + Ŷb̂E1
)− g1y(ŶâE2 + Ŷb̂E2

),
(S22)

where g1y = g1x =
√

2− 1. The corresponding quadrature variances can be expressed as

∆2X̂out = ∆2Ŷout = 1 + g21x[4(G1 +G2)− 4
√
G1(G1 − 1)− 4

√
G2(G2 − 1)− 4]. (S23)

Based on Eq. (S6), the fidelity of this {1, 2, 4} reconstruction structure can be given as

F{1,2,4} =
1

1 + g21x[2(G1 +G2)− 2
√
G1(G1 − 1)− 2

√
G2(G2 − 1)− 2]

. (S24)

Because {1, 2, 5}, {1, 3, 4}, and {1, 3, 5} reconstruction structures are equivalent to {1, 2, 4} structure, they have the
same fidelity.

By the same token, the fidelities of {2, 3, 5} ({2, 3, 4}) and {2, 4, 5} ({3, 4, 5}) reconstruction structures can be
calculated as

F{2,3,5} = F{2,3,4} = 1

2(G1+G2)−2
√

G1(G1−1)−2
√

G2(G2−1)−1
,

F{2,4,5} = F{3,4,5} = 1

2G1−2
√

G1(G1−1)+2[2G2−2
√

G2(G2−1)−1]
.

(S25)

In this way, we can obtain the average fidelity of (3, 5) threshold deterministic AOQSS protocol Favg by calculating
the average fidelity of ten reconstruction structures. Based on Eq. (S19), Eq. (S24), and Eq. (S25), when G1 →∞ and
G2 →∞, the average fidelity of (3, 5) threshold deterministic AOQSS protocol Favg → 1, beating the corresponding
classical limit of 3/5 (k/n [37, 38]).
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